MSE 6010

Principles of Functional Materials
School of Materials Science and Engineering
Georgia Institute of Technology

Fall 2024

Course Objective	To introduce fundamental principles essential to function including band structures, electronic defectsproperties, an transport of charge, mass, and energy in solids; electrical across a wide range of frequencies; and the chemical, the electrical, and mechanical interactions in solids. It also confective characterization techniques.	nd the polarization rmal,	
Instructor Backup Instructor Lecture Office Phone e-mail Office Hours			
Teaching assistant Office Hours e-mail Prerequisite	Nikhil Govindarajan (MoSE 3271) To be determined ngovindarajan8@gatech.edu Graduate standing in MSE and basic knowledge of crysta	1 structures	
Homework	of materials		
Exams/Assessment	Exam 1 September 30 , 11:00 - 12:20 pm (80 minutes) Exam 2 November 6 , 11:00 - 12:20 pm (80 minutes) Exam 3 December 6 , 11:20 - 1:00 pm (100 minutes) Total	100 points 100 points 100 points 300 points	
Grading Basis	Scale >90% (>270 points) A guaranteed >80% (>240 points) B guaranteed >70% (>210 points) C guaranteed >60% (>180 points) D guaranteed		

Learning Objectives:

Upon completion of this course, students will be able to:

- 1. Understand band structure and electronic properties of materials
- 2. Gain familiarity with the transport of charge, mass, and energy in materials under various conditions (e.g., chemical diffusion, electrical and thermal conduction)
- 3. Understand the mechanisms of electrical polarization, with a focus on interfacial polarization in material systems
- 4. Become familiar with several experimental techniques for measuring material properties, including impedance spectroscopy.

Academic Integrity

Students are reminded of their obligations under the Georgia Tech Academic Honor Code and Student Code of Conduct, available at www.honor.gatech.edu. Academic dishonesty will not be tolerated, including cheating, lying about course matters, plagiarism, or helping others commit a violation of the Honor Code.

Learning Accommodations

For students with documented disabilities, we will make classroom accommodations in accordance with the ADAPTS office (http://www.adapts.gatech.edu). However, this must be arranged in advance.

Electronic Devices

Silence cell phones during class.

A calculator (not one on an internet-connected device) is allowed during the exam, but you should not need it much.

Course Type Expectation

Most classes will be delivered in person in the classroom. However, there may be a few online lectures in case I will have to attend one or two review meetings. Recordings of these lectures will be posted on Canvas.

References

- 1. Electrons in Solids, An Introductory Survey, 3rd Edition, R. Bube, 1992.
- 2. Physical Ceramics, Y. M. Chiang, D. Birnie, and W. D. Kinggery, Wiley, 1997.
- 3. B.N. Figgis & M.A. Hitchman, Ligand Field Theory and Its Applications; Wiley-VCH, 2000.
- 4. Jean-noel Chazalviel, Coulomb Screening by Mobile Charges Applications to Materials Science, Chemistry, and Biology, Birkhauser, 1999.
- 5. S. O. Kasap, Principles of Electronic Materials & Devices, McGraw-Hill, 3nd Edition, 2007
- 6. Kwan Chi Kao, Dielectric Phenomena in Solids, Elsevier, 2004
- 7. T. Ikeda, Fundamentals of piezoelectricity, Oxford, 1990
- * Lecture notes

Class Schedule (MSE 6010)

Lecture #	Date	Topics	Ref
		Electronic properties of solids	*,1,2,3
4 weeks	Aug 19 to Sept 16	Introduction Physical principles Electrons in Solids Crystal Field Theory Band structure of ceramic materials Band conduction Hopping conduction, Ionic energy bands Temperature Effect Charged Surfaces & Space Charge Region, Complex Defects Exam 1: Electronic properties of solids	
		Transport of Mass, Charge, and Energy	*,2,4
4 weeks	Sept 18 to Oct 21	Irreversible Thermodynamics Phenomenological transport Equations Definition of transport properties/coefficients Electrical conduction, The 4-probe measurements, Hall effect Chemical diffusion; Nernst-Planck-Poisson system Relaxation of a single kind of species: Diff. and dielectric relaxation Relaxation of two kinds of species - Ambipolar diffusion Mobility of minority carriers Haynes-Shockley Experiment Microscopic transport mechanisms	
		Thermoelectricity	*, 5
1 weeks	Oct 23 to Oct 28	Thermal conduction, Thermoelectricity, Thermoelectric power Peltier heat, Thomason heat Thermoelectric cooler Thermoelectric generator Exam 2: Transport and Thermoelectricity	
		Dielectric Properties	*,6,7
4 weeks	Oct 30 to Dec 2	Concept of electrical polarization Electrical polarization in a static field Electrical polarization in an alternating field Polarization mechanisms Resonance spectra, Relaxation spectra Concept of impedance spectroscopy Impedance functions Equivalent circuit approximation Wagner-Maxwell model Interfacial polarization Piezoelectricity, Ferroelectricity, and pyroelectricity Ferroelectric materials and Applications	
	Dec 6	Exam 3: Dielectric Properties (11:20 - 1:00)	
* Lecture no			

^{*} Lecture notes